Carleson embedding theorem on convex finite type domains

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Laplace–Carleson embedding theorems

This paper gives embedding theorems for a very general class of weighted Bergman spaces: the results include a number of classical Carleson embedding theorems as special cases. The little Hankel operators on these Bergman spaces are also considered. Next, a study is made of Carleson embeddings in the right half-plane induced by taking the Laplace transform of functions defined on the positive h...

متن کامل

Hölder estimates on convex domains of finite type

This article contains a natural and important application of the holomorphic support functions for convex domains of finite type in Cn constructed in [DiFo]. Namely, we use these functions to get ∂-solving Cauchy-Fantappié kernels for ∂-closed (0, q)-forms, such that the solutions given by them on bounded forms satisfy the best possible uniform Hölder estimates. More precisely we show: Theorem ...

متن کامل

Boundary Behaviour on Convex Domains of Finite Type

We describe the optimal approach regions for a theorem of Fatou type for H p functions on convex domains of nite type in C n. Moreover we show that the Nagel-Stein phenomenon also holds in this context.

متن کامل

An embedding theorem for convex fuzzy sets

In this paper we embed the space of upper semicontinuous convex fuzzy sets on a Banach space into a space of continuous functions on a compact space. The following structures are preserved by the embedding: convex cone, metric, sup-semilattice. The indicator function of the unit ball is mapped to the constant function 1. Two applications are presented: strong laws of large numbers for fuzzy ran...

متن کامل

A Variation Norm Carleson Theorem

By a standard approximation argument it follows that S[f ] may be meaningfully defined as a continuous function in ξ for almost every x whenever f ∈ L and the a priori bound of the theorem continues to hold for such functions. Theorem 1.1 is intimately related to almost everywhere convergence of partial Fourier sums for functions in L[0, 1]. Via a transference principle [12], it is indeed equiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2010

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2009.09.022